Абстрактный

Computer Vision based Method to Detect Milk Adulteration with Water

Bezuayehu Gutema Asefa*

A rapid method based on digital image analysis and machine learning technique is proposed for the detection of milk adulteration with water. Several machine learning algorithms were compared, and SVM performed best with 89.48% of total accuracy and 95.10% precision. An increase in the classification performance was observed in extreme classes. Better quantitative determination of the added water was done using SVMR with R2 (CV) and R2 (P) of 0.65 and 0.71 respectively. The proposed technique can be used for the nondestructive determination of milk adulteration with water without the necessity of any additional reagent.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Химическая реферативная служба (CAS)
Google Scholar
Открыть J-ворота
Академические ключи
ResearchBible
CiteFactor
Космос ЕСЛИ
Библиотека электронных журналов
РефСик
Университет Хамдарда
Европейская федерация информационных технологий в сельском хозяйстве (EFITA)
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos
Секретные лаборатории поисковых систем

Посмотреть больше