A.Laxman, S.Arvind
We deal with this open issue by proposing a fully distributed cooperative solution that is robust against self-regulating and colluding adversaries, and can be impair only by an overwhelming presence of adversaries. Results show that our protocol can thwart more than 99 percent of the attacks under the best possible environment for the adversaries, with minimal false positive rates. In view of the fast-growing Internet traffic, this paper propose a distributed traffic management framework, in which routers are deployed with intelligent data rate controllers to tackle the traffic mass. Unlike other explicit traffic control protocols that have to estimate network parameters (e.g., link latency, bottleneck bandwidth, packet loss rate, or the number of flows) in order to compute the allowed source sending rate, our fuzzy-logic-based controller can measure the router queue size directly; hence it avoids various potential performance problems arising from parameter estimations while reducing much utilization of computation and memory resources in routers. As a network parameter, the queue size can be truthfully monitored and used to proactively decide if action should be taken to regulate the source sending rate, thus increasing the resilience of the network to traffic congestion. The communication QoS (Quality of Service) is assured by the good performances of our scheme such as max-min fairness, low queuing delay and good robustness to network dynamics.