Абстрактный

RECOGNITION OF VERNACULAR LANGUAGE SPEECH FOR DISCRETE WORDS USING LPC TECHNIQUE

Omesh Wadhwani and Prof Amit Kolhe

Vernacular language spoken in various countries creates a limitation on software associated with speech recognition. This paper is an attempt to overcome such problem. The suggested work makes use of Linear Predictive Technique for better interpretation of spoken words. The rule based structure of fuzzy suits very well with closeness of vernacular speech recognition. In this paper we study the feasibility of Speech Recognition with fuzzy neural Networks for discrete Words Different Technical methods are used for speech recognition. Most of these methods are based on transfiguration of the speech signals for phonemes and syllables of the words. We use the expression "word Recognition" (because in our proposed method there is no need to catch the phonemes of words.). In our proposed method, LPC coefficients for discrete spoken words are used for compaction and learning the data and then the output is sent to a fuzzy system and an expert system for classifying the conclusion. The experimental results show good precisions. The recognition precision of our proposed method with fuzzy conclusion is around 90 percent.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Google Scholar
База данных академических журналов
Открыть J-ворота
Академические ключи
ResearchBible
CiteFactor
Библиотека электронных журналов
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше