Абстрактный

Privacy Preserving Clustering Based on Discrete Cosine Transformation

M. Naga lakshmi, K Sandhya Rani

The information related to an individual or an organization could be compromised when the patterns extracted from large databases through data mining technology. Privacy preserving data mining which is a new research area has been evolved in order to find the right balance between maximizing analysis results and minimizing the disclosure of private information. In this paper, a Discrete Cosine Transformation (DCT) based data distortion method is proposed for privacy preserving clustering in centralized database environment. The experimental results proved that the proposed method efficiently protects the private data of individuals and retains the important information for clustering analysis.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Академические ключи
ResearchBible
CiteFactor
Космос ЕСЛИ
РефСик
Университет Хамдарда
Всемирный каталог научных журналов
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше