Абстрактный

Preserving Data Confidentiality and Query Privacy Using KNN-R Approach

Shruthi.K, Aruna Reddy.H, Dr K.N.Narasimha Murthy

Cloud computing is one of the famous and well known technique that processes the data query efficiently. Since it is maintaining huge amount of resources, its privacy and security is an issue. Cloud service providers are not trust worthy, so data is to be secured. Whenever the data is sent to the cloud, it is encrypted because to protect the sensitive data such that query privacy and data confidentiality is assured. Cloud computing reduces the inhouse resources .This doesn’t mean processing of the query should be slow. To ensure query privacy and data confidentiality RASP approach is designed. The RASP Perturbation technique combines Order preserving Encryption, Dimensionality Expansion, random noise injection, random projection to provide strong safety to the perturbed data and query. RASP makes use of the KNN algorithm to process the query efficiently. KNN approach use the minimum square range to process the query. It transfers data to the multidimensional space where it uses indexing approach to process the minimum square range points.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Индекс Коперника
Академические ключи
CiteFactor
Космос ЕСЛИ
РефСик
Университет Хамдарда
Всемирный каталог научных журналов
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше