Абстрактный

PREDICTIVE ANALYSIS OF SEQUENTIAL PATTERN IN TIME SERIES TEMPORAL DATASETS FOR INDIAN STOCK MARKET

Ms. Shilpa Dang, Dr. Naveeta Mehta

Data Mining is the process of extracting interesting information or pattern from large information of stock market .Therefore, the objective of the research work is to find and characterize interesting sequential pattern in temporal data sets. To accomplish the above said objective time series procedures can be used to analyze data collected over time, commonly called a time series. These procedures include simple forecasting and smoothing methods, correlation analysis methods, and ARIMA modeling. Although correlation analysis may be performed separately from ARIMA modeling, the author presents the correlation methods as part of ARIMA modeling.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Google Scholar
База данных академических журналов
Открыть J-ворота
Академические ключи
ResearchBible
CiteFactor
Библиотека электронных журналов
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше