Абстрактный

Poisson Noise Removal in Biomedical Images using Non-Linear Techniques

Jisha J U, Sureshkumar V

Medical images have always been an important factor in diagnosis of disease. Poisson Noise in those images has always been a problem with the image clarity. We propose two technique which combines Multi-Scale Variance Stabilizing Transform (MS-VST), Fast Discrete Curvelet Transform (FDCT) with Thresholding and MS-VST, FDCT with Null Hypothesis testing for effectively removing the Poisson Noise from the medical images. The effectiveness of using these techniques has been analyzed using Peak Signal to Noise Ratio and Universal Image Quality Index.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Академические ключи
ResearchBible
CiteFactor
Космос ЕСЛИ
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше