Абстрактный

ON DEMAND EFFICIENT FREQUENT ITEMSET METHOD IN UNCERTAIN DATA

Sanjaydeep Singh Lodhi, Sandhya Rawat and Premnarayan Arya

Frequent itemset mining, the task of finding sets of items that frequently occur together in a dataset, has been at the core of the field of data mining for the past sixteen years. In that time, the size of datasets has grown much faster than has the ability of existing algorithms to handle those datasets. Consequently, improvements are needed. In this thesis, we take the classic algorithm for the problem, A Priori, and improve it quite significantly by introducing what we call a vertical sort. We then use the large dataset, web documents to contrast our performance against several state-of-the-art implementations and demonstrate not only equal efficiency with lower memory usage at all support thresholds, but also the ability to mine support thresholds as yet un-attempted in literature. We also indicate how we believe this work can be extended to achieve yet more impressive results.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Google Scholar
База данных академических журналов
Открыть J-ворота
Академические ключи
ResearchBible
CiteFactor
Библиотека электронных журналов
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше