Абстрактный

OFFLINE HANDWRITTEN DIGIT RECOGNITION USING NEURAL NETWORK

Sumedha B. Hallale, Geeta D. Salunke

Optical character recognition is a typical field of application of automatic classification methods. In this paper, we have introduced a whole new idea of recognition of isolated handwritten digits which is known to be a difficult task and still lacks a satisfactory technical solution. The present paper proposes a novel approach for recognition of handwritten digits i.e. neural network classification. Back propagation neural network is one of the simplest methods for training multilayer neural networks. In this paper, we designed a back propagated neural network and trained it with a set of handwritten digits. The average success rates of recognition of all digits are 91.2%.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Академические ключи
ResearchBible
CiteFactor
Космос ЕСЛИ
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше