Абстрактный

Higher Dimensional Vector Space Component Analysis Technique for Face Recognition - A Review

Harmeet Kaur, Ravimohan, Divyanshu Rao

Face recognition is one of the most challenging areas in the field of computer vision. In this thesis, a photometric (view based) approach is used for face recognition and gender classification. There exist several algorithms to extract features such as Principal Component Analysis (PCA), Fisher Linear Discriminate Analysis (FLDA), Image principal component analysis (IPCA), and various others. Higher Dimensional Vector Space Component Analysis Techniques for Face Recognition is used for the dimensional reduction and for the feature extraction. Two face databases are taken in which one database contains the face images of male and one contains face images of females. On the basis of Euclidean Distance classification of the gender is done. Comparison between Euclidean Distance and Mahalanobis Distance for face recognition is also done with different number of test image.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Академические ключи
ResearchBible
CiteFactor
Космос ЕСЛИ
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше