Абстрактный

EVALUATION OF FACE RECOGNITION METHODS

Sushma Jaiswal, Dr. Sarita Singh Bhadauria, Dr.Rakesh Singh Jadon

Face recognition is an example of advanced object recognition. The process is influenced by several factors such as shape, reflectance, pose, occlusion and illumination which make it even more difficult. Today there exist many well known techniques to try to recognize a face. We present to the reader an investigation into individual strengths and weaknesses of the most common techniques including feature based methods, PCA based eigenfaces, LDA based fisherfaces, ICA, Gabor wavelet based methods, neural networks and hidden Markov models. Hybrid systems try to combine the strengths and suppress the weaknesses of the different techniques either in a parallel or serial manner. Today there exist many well known techniques to try to recognize a face. Experiments done with implementations of different methods have shown that they have individual strengths and weaknesses. Hybrid systems try to combine the strengths and suppress the weaknesses of the different techniques either in a parallel or serial manner. The paper is to evaluate the different techniques and consider different combinations of these. Here we compare or evaluate templates based and geometry based face recognition, also give the comprehensive survey based face recognition methods.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Google Scholar
База данных академических журналов
Открыть J-ворота
Академические ключи
ResearchBible
CiteFactor
Библиотека электронных журналов
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше