Абстрактный

Detection of Banana Leaf Disease and its Analysis Using Different Techniques

Arjun Jadhaw, Rajat Bhandari

Banana cultivation is the one of the major agriculture elements in India. As same time common problem of cultivation is that crop has been influenced by way of numerous illnesses. Early disease diagnosis is very important for banana production and crop management. Banana diseases are responsible for loses that directly impact on global fruit production and management system, resulting in economic losses of country. Proposed method combined with modified convolutional neural network and Region-Based segmentation with optimal threshold technique enabled banana disease detection and classification is proposed to overcome these issues and guide the farmers through enabling fertilizer that have to be utilized for avoiding the disease in the initial stage. The purpose of this paper is to introduce various deep learning techniques including convolutional neural network, support vector machine, AlexNet, ResNet-50, artificial neural network and VGG-16. This study has the capacity to motivate the researchers to utilize the article to better understanding of related disease prediction algorithms.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Химическая реферативная служба (CAS)
Индекс Коперника
Открыть J-ворота
Академические ключи
ResearchBible
CiteFactor
Космос ЕСЛИ
Библиотека электронных журналов
РефСик
Университет Хамдарда
Европейская федерация информационных технологий в сельском хозяйстве (EFITA)
IndianScience.in
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos
Секретные лаборатории поисковых систем
Евро Паб

Посмотреть больше