Абстрактный

Classification and Clustering of Web Log Data to Analyze User Navigation Patterns

Mrs.Niranjana.Kannan and Dr (Mrs).Elizabeth Shanthi

The information explosion in World Wide Web has increased the interest in Web usage mining techniques in both commercial and academic areas. Study of interested web users; provide valuable information for web designers to quickly respond to their individual needs and for the efficient organization of the website. Among the several approaches, like, Association rule mining, classification, clustering, to extract knowledge from user’s navigation data, this paper uses clustering and classification of log data to discover knowledge from web log files. The proposed algorithm uses Expectation Maximization (EM) clustering along with Maximum Likelihood classification for knowledge discovery from user’s navigation patterns. Experiments have been carried out in order to validate the proposed approach and evaluate the proposed algorithm.

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

Google Scholar
База данных академических журналов
Открыть J-ворота
Академические ключи
ResearchBible
CiteFactor
Библиотека электронных журналов
РефСик
Университет Хамдарда
научный руководитель
Импакт-фактор Международного инновационного журнала (IIJIF)
Международный институт организованных исследований (I2OR)
Cosmos

Посмотреть больше